13 DEMONSTRATING INDISTINGUISHABILITY FROM BACKGROUND

Thus far in this report the emphasis has been on conducting final status surveys that demonstrate
that any residual radioactivity in a survey unit is within the release criterion. In these cases,
Scenario A is generally preferred for the survey design. In some cases, however, it may be more
appropriate to demonstrate indistinguishability from background. Demonstrating
indistinguishability from background using Scenario B will be a useful option when the residual
radioactivity consists of radionuclides that appear in background, and the variability of the
background is relatively high. Background variability may be considered high when differences

in estimated mean concentration measured in potential reference areas are comparable to
screening level DCGLs.

13.1 Determining Significant Background Variability

In Section 2.2.7, the concept of a reference area was introduced. Any difference in the
concentrations between the reference area and the survey unit is assumed to be due to residual
radioactivity. It is not possible to determine whether or not an observed difference is actually due
to variations in the mean background concentrations between these areas.

When the variations in mean background among different potential reference areas are small
compared to the width of the gray region, they can often be neglected. In such cases, the choice
of reference area will not materially affect the decision on whether or not to release a survey unit
to which it is compared.

As the variations in mean background among different potential reference areas become
comparable in magnitude to the width of the gray region, they can no longer be ignored. When
the reference area has a higher mean background than the survey unit, the survey unit will be
more likely to pass, and when the reference area has a lower mean background than the survey
unit, the survey unit will be more likely to fail. Since any difference in background activity

between the survey unit and the reference area is attributed to residual radioactivity, the choice of
reference area may materially affect the decision on whether or not to release a survey unit to
which it is compared.

As an example, consider Figure 13.1, which illustrates a DQO specification for a survey design.
The gray region and acceptable rates for decision errors are shown by the solid curve. Suppose
the reference area happens to have a lower mean concentration than the actual background
concentrations in the survey unit. This difference is depicted by the double-headed arrow. The
values of residual radioactivity concentrations in this survey unit will appear larger than they
actually are by the amount of that difference. The result is that the actual probability that the
survey unit passes is represented by the dashed curve, which is shifted downward from the solid
curve by the difference in mean background between the survey unit and the reference area. This
means, for example, that when the true residual radioactivity concentration is at the LBGR there
is only about a 65% probability of passing this survey unit, rather the 95% probability specified

in the DQO.

Exactly how much, and in which direction the probabilities shift will depend on the particular
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reference area. Under such circumstances, whether a survey unit passes or fails may depend
more on the particular reference area chosen than on the amount of residual radioactivity that it
contains. This leads to a quantitative definition of what it means for a survey unit to be
indistinguishable from background. It is expressed in terms of the potential for variations in
reference area mean concentrations to impact decision error rates. First, it is necessary to
establish that there is significant variability among potential reference areas. A procedure for
doing this is discussed in the next section. If it shown that significant variability exists, this
information is used to define a level of residual radioactivity concentration that is
indistinguishable from background variations. Section 13.4 discusses how this can be used to
plan a final status survey using Scenario B.
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Figure 13.1 Impact of Background Variability on Decision Errors

13.2 Determining if Reference Areas Have Significantly Different Background Levels

In this section, we focus our attention on potential reference areas. Consider all the reference
areas to which a particular survey unit may be compared according to the criteria set out in
Section 2.2.7. To determine whether there are significant differences among the reference area
background means, the reference area measurements are expressed as:

Xj =&t Wity (13-1)

where

X; = thejth measurement in théh reference area, fp~ 1 ton, the number of measurements in
theith reference area, and fo= 1 tok, the number of reference areas

¢ =the mean concentration over all reference areas

K = the difference between the overall mean and the meaniih tlederence area

z; = the contribution of random spatial and measurement variability titth@easurement in
theith reference area
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£ is an unknown constant. Theare distributed across reference areas with mean zero and
standard deviatiom, but within reference area y; has a fixed valuerhez, have mean zero and
standard deviation. The measurements within reference afeave mearg + ;, and variance

o’. The reference area means are distributed around the overalfmé@tnvariance deviation

w? Thus, if there is no variability in the reference area means,dfen0. The measurement
variability within each reference areast§ and it is the same whether or not there is a significant
difference among the reference area means.

If the ; and thez; are assumed to be normally distributed, the above corresponds to a random
effects one-way analysis of variance model, sometimes called Modet Ando? are called the
components of variance. The null hypotheliis; w? = 0, versus the alternativid, : w?*> 0, is

tested parametrically with an F-test. The non-parametric equivalent is the Kruskal-Wallis test.

Before collecting data for the Kruskal-Wallis test, the acceptable Type | errox ggtemust be
specified. This is the acceptable probability of concluding that the reference areas have different
average concentrations, when in fact they are the same. In sgfifigs important to consider

that the risk involved in a Type | error may be much smaller than the risk of a Type Il error.

To perform the Kruskal-Wallis test, all of the measurements from the reference areas are pooled
and ranked. For every measuremept,there is a corresponding ramk. There will be

N=n, +n, +... + n measurements in all. The sum of all of the ranR&(M+1)/2. Therefore

the average rank isi(N+1)/(2N) =(N+1)/2. If the distribution of measured concentrations in each
reference area is the same, then the average rank for each reference area, should also be about the
same, i.e.,N+1)/2.

Let

R - 1 zi:rij = R/n, (13-2)

nl J:]_

be the average rank in reference ardane quantity ﬁl - (N+1)/2 is a measure of how
different this reference area is from the others.

The Kruskal-Wallis statistic is a weighted sum of the squares of these differences over all of the
reference areas:

- 12 K B _ (N4 2 12 K X i .
NN 2 n(R-(N-1)2ff - NN (2 R /ni) 3(N+1) (13-3)

The weights in Equation 13-3 have been chosen so that the probabilkydke¢eds a given
valueK,, may be approximated by a chi-squared distribution kvithdegrees of freedom:

Prob(K > K) = 1- x5 ,(K) (13-4)
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The critical valueK, is determined from setting> ,(K) = o, Values of; ,(K)  for

typical values oty,,, are tabulated in Table 13.1. If the valu&Kafomputed from Equation 13-3
exceed«, , then the null hypothesis is rejected.

Table 13.1 Critical Values,K,, for the Kruskal-Wallis Test

aKW
k-1 0.01 0.025 0.05 0.1 0.2
1 6.6 5.0 3.8 2.7 1.6
2 9.2 7.4 6.0 4.6 3.2
3 11.3 9.3 7.8 6.3 4.6
4 13.3 11.1 9.5 7.8 6.0
5 15.1 12.8 11.1 9.2 7.3
6 16.8 14.4 12.6 10.6 8.6
7 18.5 16.0 14.1 12.0 9.8
8 20.1 17.5 15.5 13.4 11.0
9 21.7 19.0 16.9 14.7 12.2
10 23.2 20.5 18.3 16.0 13.4

For example, suppose there are four reference areas under consideration, and ten measurements
are made in each. The data and the ranks are shown in Table 13.2. The same type of spreadsheet

functions that were used for the WRS test can also be used to calculate the ranks for the Kruskal-
Wallis test.

Using Equation 13-2,

12 (S pen) e
K—N(N+1)(2Ri/ni) 3(N+1)

12
40(41)

( 155/10+121%/10+255/10+ 2892/10) - 3(41)

12 2402.5:1464.1+6502.5:8352.1) - 123 - —2_ (18721.2)- 123.0 - 14.0
1640 1640
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With k-1 = 3, this value oK, is greater than the highest valuekqin Table 13.1, viz., 11.3 for
o = 0.01 . The null hypothesis is rejected. It is concluded that these reference areas do have
significantly different concentration distributions.

Table 13.2 Example Data for the Kruskal-Wallis Test

Measurements Ranks
Area l [Area 2| Area 3| Area 4 Area |l Areal2 Areg3 Arep4

1 0.27 1.04 2.45 3.77 6 13 27 39

2 1.87 0.39 0.34 2.63 20 9 8 31

3 0.97 2.07 3.06 4.05 10 23 37 4(

4 1.01 (-0.57 2.83 1.72 11 2 35 19

5 2.08 1.97 1.09 1.50 24 21 14 17

6 1.62 (-0.22 0.26 2.47 18 3 5 29

7 0.30 1.39 2.80 1.42 7 15 34 16

8 1.98 0.05 2.77 2.47 22 4 33 29

9 2.18 [-0.75 2.42 2.76 25 1 26 32

10 1.02 2.50 2.86 3.35 12 30 36 38

Mean | 1.33 0.79 2.09 261 Sum 15% 121 255 289

StdDev| 0.71 1.17 1.09 0.91 Tothal 820

13.3 Establishing the Concentration Level That Is Indistinguishable

Once it is decided that there are significant differences among the potential reference areas for a
survey unit, a measure of the variability among these reference areas is needed.

The sample mean of the measurements iniasea
1 o

nl J:]_

which provides an estimate of the mean concentration in referende maezely & + |, .

The overall sample mean

>

k i
> X%
)?: i=1j=1

i”i

i=1

(13-6)
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is an estimate of the overall mean background concentrgtion,

The sample variance of the measurements iniasea
n; n;
S* = 04 -%)%/(n-1)= 3 (- 2)°/(ny-1) (13-7)
j=1 j=1

which is an estimate of?.

Sinced?, is assumed to be the same in each reference area, these estimates can be pooled into the
following estimate:

k N k N k
Yy 06-R% X3 - Yok
S\/% _ |=1]|:1 _ _i=1j=1 - i=1 (13-8)
_:1(ni_1) ;(ni_l)

In the analysis of variances\,i is called the mean square within referenc® areas

The mean square between reference areas is

K K K N \o [ Kk
, 2 n; (X - X)? IZ:; ni()?i)z - (i Xij) Z n;
® - k-1 i k1

The righthand sides of Equations 13-8 and 13-9 may appear imposing, but essentially only
involve:

(1) the sum of the squares of all the measurements,

> % (13-10)

k N
i—1j-1

D The sum of the squared differences from the overall mean is composed of two parts:

k N k N k
1

k N K N0
EZ(XU'_E)Z = ZZ(XU_Z)Z * EZ@‘QZ: ZZ(XU_Z)Z * z:ni(ii_i)2

i—1j-1 i—1j-1 i—1j-1 i—1j-1 i-1

The first term on the right hand side is the sum of squares within reference areas and the second term on the right
hand side is the sum of squares between reference areas. The mean square is obtained by dividing the sum of
squares by the degrees of freedom. For the means square within reference areas this is the total number of data
points minus the number of reference areas. For the means square between reference areas this is the number of
reference areas minus one.
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(2) the square of the sum of all the measurements,

( zkj 11 &j) i (13-11)

i=1]
and

(3) the sum of the squares of the reference areagageveeghted ty the number of
measurements,

Zk: ni(fi)z (13-12)
i-1

The component of variance?, is estimated o

k
N-Y n?/N
~2 2 2 i=1
= -s))/n, where n, = ———— 13-13

N, is usualy slightly less than the avega number of samples taken in each reference area,

k

S ) (13-14)
K iz

If the number of measurements in each reference area is therganm®g,= ...= n, = n,then,
k
N-Y n2/N
n - .X; ' _ N-kn?/N _ kn-kn?/kn _ kn-n _ n(k-1) __ (13-15)
0 (k-1) (k-1) (k-1) (k-1) (k-1)

The calculation of®»? for the example data of Table 13.2 proceeds tirsirsums and squares
shown in Table 13.3.

The sums (1), (2), and (3)gether withs,? ands,? are calculated from Table 13.3 as follows:

From Equation 13-10,
(1) = sum of squares = 22.28 + 18.50 + 54.30 + 75.80 = 170.88.

From Equation 13-11,
(2) = square of the sum = (13.30 + 7.87 + 20.88 + 26.14) = (68.19) = 4649.88.
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From Equation 13-12,

(3) = weighted sum of the squares of the averages 16(1.33 > 0.79%+ 2.0 + 2.61 )
= 10(1.77 + 0.62 + 4.36 + 6.83) = 10(13.58) = 135.8.

From Equation 13-8,
s,2= (170.88- 135.8)/N-k) = (170.88- 135.8)/36 = 0.97.

From Equation 13-9,
s,2= (135.8- (4649.88N))/(k-1) = (135.8- (4649.88/40))/(3) = 6.52.

Finally, we have

&2 = (s - s))/n, = (6.52 - 0.97)/10 = 0.55 (13-16)

Table 13.3 Calculation of @* for the Example Data

Measurements Measurements Squared |
Area 1| Area 2| Area 3| Area 4| Area 1] Aread Area3d Areal
1 0.27 1.04 2.45 3.77 0.07 1.08 6.00 14.21
2 1.87 0.39 0.34 2.63 3.50 0.1% 0.1p 6.92
3 0.97 2.07 3.06 4.05 0.94 4.28 9.3p 16.40
4 1.01 | -0.57 2.83 1.72 1.02 0.32 8.01 2.96
5 2.08 1.97 1.09 1.50 4.33 3.88 1.1p 2.25
6 1.62 | -0.22 0.26 2.47 2.62 0.05 0.07 6.10
7 0.30 1.39 2.80 1.42 0.09 1.93 7.84 2.02
8 1.98 0.05 2.77 2.47 3.92 0.00 7.6}/ 6.10
9 2.18 | -0.75 2.42 2.76 4.75 0.56 5.86 7.62
10 1.02 2.50 2.86 3.35 1.04 6.2% 8.1B 11.22
sum |[13.30 7.87 | 20.88| 26.14 22.28 1850 54.30 75]80
average| 1.33 0.79 2.09 2.61
avg sqd| 1.77 0.62 4.36 6.83

Although the analysis of variance using the F-test requires the assumption that the data are
normally distributed, the calculation &f does not. Therefore, the values of the mean sqsgres
ands,? that aregenerated  most statistical computer gpams for ANOVA can be used for
these calculations. Table 13.4 shows an ANOVA for the examplegelagaated ¥ a spreadsheet
program. The enir for the mean square withgroups, 0.97, is the same as was found in Table
13.3 fors,?. Similarly, the enty for the mean square betwegnoups, 6.52, is the same as was
found in Table 13.3 fos. The F-statistic, which is simpthe ratios,?/s,? is also shown. Of
course, if the data from each reference area are consistent with the assumption ofyndmealit
F-test mg simply be used instead of the Kruskal-Wallis test.
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Table 13.4 Analysis of Variance for Example Data

Source of Sum of Degrees off Mean Squa}e F Statisti¢
Variation Squares Freedom
Between
Groups 19.56 3 6.52 6.69
Within
Groups 35.08 36 0.97
Total 54.65 39

13.4 Using the Concentration Level That Is Indistinguishable in the WRS Test
Recall from Section 3.6, that in Scenario B, the hypotheses being tested are

Null Hypothesis:

H,: The mean concentration of residual radioactivity in the survey unit is indistinguishable from
background up to a level specified by the LBGR.

versus

Alternative Hypothesis:

H,: The mean concentration of residual radioactivity in the survey unit distinguishable from
background is in excess of the DC{L .

In this scenario, a Type | decision error, with associated probadhijlisymade when a survey

unit fails when it should pass. A Type Il decision error, with associated prob@biltynade

when a survey unit passes when it should fail. To set these decision errors, an appropriate gray
region is needed. The lower bound on this gray region is the concentration level above
background that may be considered distinguishable from background.

If the null hypothesis of Kruskal-Wallis test has been rejected, the mean background levels
among reference areas varies about the overall wiéth a standard deviation estimatedday

The difference in concentration that is distinguishable above background variability may be
expressed in terms of an appropriate multiplé.of~or example, if the reference area means are
normally distributed, the probability that the survey unit mean is more than two standard
deviations away from the overall mean is about 5%. Regardless of how the data are distributed,
Chebyshev’s Inequality states that the probability that the true mean background in the survey
unit differs from the overall mean background by more than t standard deviations is lest’than 1/
Therefore, the probability that the survey unit mean is moretthahstandard deviations away

from the overall mean is less thant?4/1/4 = 25%. The probability that the survey unit mean is
more thart = 3 standard deviations away from the overall mean is less th&n119 = 11%. In

most cases, it is reasonable to assume that the true probabilities will fall somewhere between the
value calculated for the normal distribution and that established by Chebyshev’s inequality. The
multiple that of® that is used in a specific application should be decided during the DQO
process, but a factor of three is a reasonable default.
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For the example dat&? = 0.55 sai = 0.74. Thus, differences smaller thain 3 2.22 would not
be considered distinguishable from background variations. Notice that in Table 13.2, the
difference in the means between reference areas #4 and #2 is@ &= 1.82.

The WRS test is applied as described in Section 6.3, using the decided upon multipketbe
LBGR, and the width of the gray region equal to the DG;GL . The hypotheses tested by the
WRS under Scenario B are restated as

Null Hypothesis:

H,: The difference in the median concentration of radioactivity in the survey unit and in the
reference area is less than the LBGR.

versus

Alternative Hypothesis:

H,: The difference in the median concentration of radioactivity in the survey unit and in the
reference area is greater than the DG,GL .

The Type | error rate,, =a/2®, is the probability that a survey unit with a difference from the
reference area equal to the LBGR will fail the test. The powdt, i$ the probability that a

survey unit with a difference at the DC(L  above the LBGR will fail the test. For example, the
desired probability for the survey unit passing might look similar to Figure 13.2.
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True Concentration of Residual Radioactivity in Survey Unit

Figure 13.2 Example DQOs for the Probability That the Survey Unit
Passes Versus the Concentration Difference Between the
Survey Unit and the Reference Area

@ Recall that since the Quantile test is performed in tandem with the WR&esty ,= a/2, so that the
that the size of the two tests in tandem is approximately s+o
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The Quantile test is also performed as described in Section 7.2 ywth/2, and with the
LBGR equal to the decided upon multipledaf

All of the reference area measurements taken for the Kruskal-Wallis test should also be used in
the WRS and Quantile tests. In most cases, no additional reference area samples will be needed.
If additional samples are required, yhshould be obtained randombwith all of the reference

areas beig equaly likely to be sampled.

13.5 Determining the Number of Reference Areas and the Number of Samples

In appling the methods of this chapter, it is natural to ask is howymeference areas should be
studied, and how mgrsamples should be taken in each. As was seen in Section 3.8.1, the
number of samples needed depends on both the propalbiitType | error &) and the

probability of a Type Il error 3) that are deemed acceptable for the test. Unfortynaited power
(1-p) of the Kruskal-Wallis test involves functions that are “too complicated to be useful”
(Lehmann and D'Abrerra, 1975). However, it has been shown that the effioiethe Kruskal-
Wallis test relative to the F-test is the same as the effigciehthe WRS test to the t-test
(Andrews, 1954). This means that one gahan approximate idea of the power of the Kruskal-
Wallis test ly calculatirg the power of the F-test.

The power of the F-test is (Brownlee, 1960, p.268):

1

1-B = Probability] F(f,,f,) > b F, o (f.1)] (13-17)

where

2
b =1+ n% ,and F _ (f,f,) isthe ta, percentile of th& distribution withf, =k - 1
o)

andf, = kn-k degrees of freedom. Thrgh ¢, the power depends on the ratio of the variance
components. Under the nulypothesisw?= 0, sodp = 1.

As an example, consider the data from Table 13.2. If one wished to detect a situation in which
w’=0%, thenp = 1 + 10(1) = 11. Ify,, = 0.1, thenF,_(f,,f,) =F,(3,36) =2.243.The

power, L[, is then the probabilitthat theF-statistic with 3 and 36 deees of freedom exceeds
2.243fp = 2.243/11 = 0.203% is the probabilit that theF-statistic with 3 and 36 deees of
freedom is less than 0.2039. This probapiktabouty = 0.1, so the power is about 0.9.

The results of this calculation for other numbers of samples and reference areas are shown in
Table 13.5 fora,,, = 0.05, 0.10 and 0.20. Althgl this is ony an approximation, and the

actual power of the Kruskal-Wallis test would belsliy lower, this table indicates that with four
reference areas each with between 10 and 20 samples in eachgeimeuéldy be adequate. Since
the risk of not detectmbaclground variations that are actyafiresent (a ¥pe Il error) could
involve the impossible task of remediatibaclground, choosig a hgher value for,,, than for

B would often bgustified. From Table 13.5, whée= 4, this implies thatk,,, = 0.1 is a

reasonable default, and in some circumstances egar halues could be considered.
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Table 13.5 Power of the F-test Whew? = ¢?

Number of | Number Total [0) Power Power Power
reference | of sampleg Numbef when when when
areas in each of o =005|acy = 0.1 ayy, = 0.2
(k) (n) Samples
(kn)
2 10 20 11 53.4% 60.7% 69.3%
2 15 30 16 61.3% 67.4% 74.5%
2 20 40 21 66.1% 71.5% 77.7%
2 30 60 31 72.1% 76.5% 81.7%
3 10 30 11 74.0% 79.7% 85.7%
3 15 45 16 81.8% 85.9% 90.1%
3 20 60 21 86.1% 89.2% 92.4%
3 30 90 31 90.5% 92.7% 94.9%
4 10 40 11 85.3% 89.3% 93.0%
4 15 60 16 91.4% 93.8% 96.0%
4 20 80 21 94.2% 95.8% 97.3%
4 30 120 31 96.7% 97.6% 98.5%
5 10 50 11 91.8% 94.3% 96.5%
5 15 75 16 95.9% 97.2% 98.3%
5 20 100 21 97.6% 98.4% 99.0%
5 30 150 31 98.9% 99.2% 99.5%
6 10 60 11 95.4% 97.0% 98.3%
6 15 90 16 98.1% 98.8% 99.3%
6 20 120 21 99.0% 99.4% 99.6%
6 30 180 31 99.6% 99.8% 99.9%

13.6 Determining When Demonstrating Indistinguishability Is Appropriate

The methods of this chapter were developed specifically to address potential difficulties with
demonstrating compliance with dose-based release criteria at sites with spatially variable
background concentrations of natural radionuclides. Generally, the use of Scenario A is preferred
since it involves fewer assumptions in its application and requires only one statistical test. The
null hypothesis for Scenario A is such that when the residual radioactivity in the survey unit is
very close to the DCG). , the default decision is to not release the survey unit without further
investigation. This provides additional assurance that the release criteria will not be exceeded.
However, when the variability in background is high, this assurance comes at too high a price,
namely the possibility of requiring remediation of survey units containing only background
concentrations of radionuclides. Since the default decision in Scenario B is to release the survey
unit, a second statistical test, the Quantile test, is used to detect non-uniform concentrations of

13-12 NUREG-1505



DEMONSTRATING INDISTINGUISHABILITY

residual radioactivity that may be excess of the release criterion, but that might be missed by the
WRS test..

It is not possible to anticipate every circumstance in which these methods might be considered
applicable. The suitability of these methods to specific situations should be determined during
the DQO process. Two factors that should be considered in making this determination are:

(1) Have reasonable efforts been made to reduce measurement uncertainty. e.g., by use of
radionuclide-specific methods?

(2) Have reasonable efforts been made to reduce spatial variability by choosing homogeneous
survey units with well-matched reference areas?

Once it is determined that the methods of this chapter are appropriate, the error rates for the
Kruskal-Wallis test should be set. The Kruskal-Wallis test is used to determine whether the
spatial variability of average reference area background concentrations is significant. The
significance level is . If adequate consideration has been given to the decision to demonstrate
indistinguishability «,,, need not be set to too low a value. Indeed, if it is felt that background
variability should always have the benefit of the doubt, the Kruskal-Wallis test need not be
conducted. Not conducting the test is essentially the same as ag{}irgl.0. Table 13.5 could

still be used as a guide in determining the number of reference areas, and the number of
measurements in each, that will be used to estitwatecording to the procedures of

Section 13.3.

Finally, the appropriate multiple @f to be used as the LBGR should be determined. The
discussion of this issue in Section 13.4 can be used as a guide.
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